Introduction of Methyl Groups at C2 and C6 Positions Enhances the Antiangiogenesis Activity of Curcumin

نویسندگان

  • Hyun-Jung Koo
  • Sarah Shin
  • Joon Young Choi
  • Kyung-Han Lee
  • Byung-Tae Kim
  • Yearn Seong Choe
چکیده

Curcumin has diverse biological activities, but is known to undergo rapid metabolism via reduction of vinylic double bonds and phase II conjugation. To prevent reductive metabolism of curcumin, we introduced a methyl group at both C2 and C6 positions (compound 1) or at the C2 position (compound 2) of curcumin, creating steric hindrance on double bonds against metabolizing enzymes. As predicted, these compounds were resistant to reduction by alcohol dehydrogenase. Compound 1 was further evaluated for its antiangiogenesis activity in vitro and in vivo. It exhibited significantly greater inhibitory activity than curcumin against endothelial cell migration, invasion, and tube formation. Similarly, the in vivo Matrigel plug assay in C57BL/6 mice showed more pronounced reduction of blood vessels in the plugs containing 1 than those containing curcumin. Moreover, 1 suppressed tumor growth more effectively than curcumin in a U87MG mouse xenograft model by inhibiting angiogenesis. In vivo metabolite analysis by liquid chromatography/mass spectrometry demonstrated that 1 underwent markedly slower reductive metabolism than curcumin. Taken together, our results indicate that 1 has enhanced antiangiogenesis activity and suppression of tumor growth compared with curcumin, reflecting diminished reductive metabolism owing to the introduction of methyl groups at the C2 and C6 positions of curcumin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Curcumin enhances liver SIRT3 expression in the rat model of cirrhosis

Objective(s): Bill duct ligation (BDL) is a representative model of biliary cholestasis in animals. Curcumin has a protective effect on the liver; however, its underlying mechanisms are not completely known. This study explored the hepatoprotective activity of curcumin on hepatic damage via measuring the expression of sirtuin3 (SIRT3), AMP-activated protein kinase (AMPK), carnitine palmitoyltra...

متن کامل

Biodegradable micelles enhance the antiglioma activity of curcumin in vitro and in vivo

Curcumin (Cur), a natural polyphenol of Curcuma longa, has been recently reported to possess antitumor activities. However, due to its poor aqueous solubility and low biological availability, the clinical application of Cur is quite limited. The encapsulation of hydrophobic drugs into nanoparticles is an effective way to improve their pharmaceutical activities. In this research, nanomicelles lo...

متن کامل

Nanocurcumine Ameliorates Lipopolysaccharide-induced Depressive-like Behavior in Mice

Objective(s): Curcumin, a plant alkaloid from Curcuma longa, possess antioxidant and anti-inflammatory properties. Recently, the antidepressant activities of curcumin were reported. Nevertheless, bioavailability of curcumin limits its therapeutic utility. Nanotechnology is a developing field that potentially enhances bioavailability and the plasma concentration of curcumin. This study investiga...

متن کامل

Evaluation of Pharmacological Activity of Heterobimetallic Coordination Compounds Containing N, N-Bis (2-hydroxyethyl)-Ethylenediamine on HT29, HeLa, C6 and Vero cells

The present study was conducted in order to investigate the pharmacological activities of three heterobimetallic coordination compounds: [Cd(N-bishydeten)2][Ni(CN)4] (C1), [Cu2(N-bishydeten)2Co(CN)6].3H2O (C2), and K[Cd(N-bishydeten)Co(CN)6].1.5H2O (C3) (N-bishydeten = N,N-bis(2-hydroxyethyl)-ethylenediamine). This paper describes the ability of complexes to inhibit cell growth, cell migration ...

متن کامل

Evaluation of Pharmacological Activity of Heterobimetallic Coordination Compounds Containing N, N-Bis (2-hydroxyethyl)-Ethylenediamine on HT29, HeLa, C6 and Vero cells

The present study was conducted in order to investigate the pharmacological activities of three heterobimetallic coordination compounds: [Cd(N-bishydeten)2][Ni(CN)4] (C1), [Cu2(N-bishydeten)2Co(CN)6].3H2O (C2), and K[Cd(N-bishydeten)Co(CN)6].1.5H2O (C3) (N-bishydeten = N,N-bis(2-hydroxyethyl)-ethylenediamine). This paper describes the ability of complexes to inhibit cell growth, cell migration ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015